Mass and metallicity constraints on supernova progenitors from integral field spectroscopic study of the explosion site

Hanin Kuncarayakti, Mamoru Doi, Greg Aldering, Nobuo Arimoto, Keiichi Maeda, Tomoki Morokuma, Rui Pereira, Tomonori Usuda, Yasuhiro Hashiba

1Institute of Astronomy, the University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; 2Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; 3National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; 4Kavli IPMU, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan; 5Centre de Physique Nucleaire de Lyon, 4 Rue Enrico Fermi, 69622 Villeurbanne Cedex, France; 6Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, HI 96720, USA

We present the results of our integral field spectroscopic study of 27 nearby type Ic/Ib/I-II-L/II-P supernova explosion sites, done with SNIFS and GMOS. Employing the technique of IFS enables us to observe the stellar populations present at the explosion site spatially and spectrally. The physical properties of the parent stellar population of the SN progenitor such as age and metallicity were derived from its spectrum, which in turn give age and metallicity estimate of the coeval SN progenitor. With this method we were able to constrain the metallicity and initial mass of the SN progenitors and compare it to theoretical predictions. We found indications that both single massive progenitor and binary super-WR progenitor channels may be at play in producing SNe Ib/c, and some of the type II SN progenitors may have been as massive as Ib/c progenitors.

Observations using 2.2m UH88/SNIFS and 8.1m Gemini/GMOS at Mauna Kea in 2010-2011

Coverage: 350-970 nm @ R-1000, 6.4'/6.4' FoV @ 0.4'/spaxel (SNIFS)
400-680 nm @ R-1700, 5'/3.5' FoV @ 0.2'/spaxel (GMOS)
Data reduction & analysis using IRAF

With integral field spectroscopy: probing the immediate SN environment spatially and spectrally

- Observations using 2.2m UH88/SNIFS and 8.1m Gemini/GMOS at Mauna Kea in 2010-2011
- Coverage: 350-970 nm @ R-1000, 6.4'/6.4' FoV @ 0.4'/spaxel (SNIFS)
400-680 nm @ R-1700, 5'/3.5' FoV @ 0.2'/spaxel (GMOS)
- Data reduction & analysis using IRAF
- With integral field spectroscopy: probing the immediate SN environment spatially and spectrally

Looking into the explosion sites, spatially & spectrally

- SC: 11.0 Myr, 0.83Z → 17.9 M sun progenitor
- Nomoto+94: 15 M sun binary progenitor
- SC: 13.4 Myr, 0.83Z → 14.9 M sun progenitor
- SC: 15.6 Myr, 0.33Z → 17.7 M sun progenitor
- SC age: 10-16 Myr (Winko+09), 20 Myr (Wang+05), 13.6 Myr (Maiz-Apellanis+04)

IFU spectroscopy of nearby SN sites

- Using IFS, we detect SN progenitor parent stellar population
- Extract the spectrum of the parent population from IFU datacube
- Compare parent population spectrum with SSP models (Starburst99, Leitherer+99) → age from age indicators such as Hα / CaT equivalent widths
- Metallicity is derived by strong-line method (Pettini & Pagel 2004)
- Derive SN progenitor age & metallicity from the parent population
- Progenitor star age (lifetime) → initial (ZAMS) mass via Padova stellar evolution models (Bressan+93)

■ What kind of massive star explodes as a particular type of SN?
■ Mass & metallicity: two of the most important parameters in progenitor star evolution
■ It is still necessary to confront model predictions with more observational data
■ From direct detection (and nondetection) → SN II-P progenitors are RSG stars of ~8-17 M sun (Smartt+09), few H-L/b/Ln progenitor detections up to now
■ No Ib/c progenitor detections so far... are they really WR stars >25 M sun? Or lower-mass binaries?
■ Direct detection: powerful but difficult to increase statistics → alternative strategy: study the immediate SN environment & parent stellar population

Hunting down the progenitors of CCSNe

■ On average, SN I- progenitors are more massive and metal rich than Ib
■ Binary (sub-WR mass) progenitors are prevalent in SN Ib/c, in addition to massive (>25 M sun) single progenitors (similar to the conclusion of Leloudas+11), and possibly more frequent in SN Ib
■ Some SN II progenitors may be as massive as single SN Ib/c progenitors, as we estimated that 50% of the sample are possibly contaminants (SN cluster chance superpositions)

■ Smartt+09 II-P
■ Upper limits only

■ Mass and metallicity of the parent stellar population of the SN progenitor such as age and metallicity were derived from its spectrum, which in turn give age and metallicity estimate of the coeval SN progenitor. With this method we were able to constrain the metallicity and initial mass of the SN progenitors and compare it to theoretical predictions. We found indications that both single massive progenitor and binary super-WR progenitor channels may be at play in producing SNe Ib/c, and some of the type II SN progenitors may have been as massive as Ib/c progenitors.