Spectrophotometric Evolution of Eta Carinae's Great Eruption

Armin Rest
(STScI)

Collaborators: Jose Luis Prieto, Federica Bianco, Nathan Smith, Nolan Walborn, Brendan Sinnott, Doug Welch, Ryan Foley, Ryan Chornock, Mark Huber, Howard Bond, Chris Smith, Knut Olsen, Tom Matheson, Pete Challis, Dante Minniti, Alejandro Clocchiatti…
η Car historical light curve

- Great Eruption from 1838-1858 (Mass loss >10 M_{solar})
- Peaks in 1837, 1843, 1845

Smith & Frew 2011
Light Echoes!

Rest et al. 2012, Nature

Eta Carinae

2003 March 10 (A)

2010 May 10 (B)

2011 February 6 (C)

C-A Diffim Zoom
Scattering Dust

Spitzer Image (8 microns)

Difference Image
black: light echo in 2003
white: light echo in 2011
3D view

η Car light echo roughly perpendicular to equator of Homunculus Nebula
Light Echo Spectrum of η Car Great Eruption

Rest et al. 2012
Best correlation to supergiant spectra: G2-G5 (~5000 K)

Ca NIR triplet: blueshift ~200 km/s, asymmetric shape

Supergiant templates: UVES (Bagnulo+) and Ca IR triplet (Cennaro+)
LBVs & η Car

- G type is later than common for LBV outbursts
- Exceeds theoretical limits of opaque wind model by Davidson 1987
LBVs & \(\eta \) Car

- G type is later than common for LBV outbursts
- Exceeds theoretical limits of opaque wind model by Davidson 1987
- Davidson & Humphreys 2012: claim that Davidson 1987 opaque wind model always predicted \(T = 5400-6500 \)K, even if text said 7000K

Davidson 87:

\(\text{temperatures. The resulting } Q(T_0) \text{ must resemble the schematic dashed curve in Figure 1, rising almost asymptotically as } \frac{d(\log \kappa)}{d(\log T)} \text{ approaches 4 somewhere between 6500 and 7000 K. The implication seems to be that } T_0 \text{ cannot fall far below 7500 K even if the mass-loss rate is enormous. Of course,} \)
1843 peak
At early times (~1843) absorption spectrum

Evolves to P-Cygni profile 6 months later

Nearly pure emission lines 14 month later
1850+ spectrum

Armin Rest, 03/12/08, Wunch
CN bands in post-1843 peak
Pre-1837 spectrum

Wise 8 micron

gri SOAR image
Light curves pre-1837 and 1837
1837 peak

group = 3, ID = 76, X = 1474, Y = 1311

[Graphs and spectra]
Pre-1837 peak

- Ulyss IDL package
- Elodie spectral stellar library
- Very good fit with 7000K spectrum
- 200 km/s blueshift
Temperature and surface gravity

- Ulyss IDL package
- Elodie spectral stellar library
- Pre-1837: Very good fit with 7000K spectrum
- Post 1843 minimum: P-Cygni profile, thus T could be biased
Summary

η Car light echo spectrum of 1943 peak:
- Similar to G2-G5 supergiant, ~5000 K
- No emission lines!
- Blueshifted Ca NIR triplet by ~200 km/s,
- Asymmetric shape of Ca NIR triplet: blue tail up to -850 km/s

η Car light echo spectra post-1943 peak, at minimum
- Changes from absorption to emission line spectrum with time
- Temperature stays the same at 5000K if not getting cooler
- Strong CN bands

Pre-eruption spectrum
- Best fit with 7000K SG spectrum
- Higher surface gravity

In a few years: The Great Eruption in 4D!
The $Q(T_0)$ curve becomes very steep at the left side of Figure 1 because opacity declines quickly with decreasing temperature below 7000 K; this effect will occur with any reasonable set of opacities. In fact, the effect is probably more dramatic than a simple constant-n curve indicates. Imagine, for example, a wind whose speed $v(r)$ is proportional to r, so that $\rho(r)$ is proportional to r^{-3}. For high values of T_0, where the opacity κ is nearly uniform, the wind is well represented by the $n = 3$ curve in Figure 1. However, for temperatures below 7500 K the opacity becomes strongly temperature-dependent; and since $T(r)$ decreases outward, then so does $\kappa(r)$. Consequently, the model index $n = -d(\log \kappa)/d(\log r)$ rises significantly above 3 at low temperatures. The resulting $Q(T_0)$ must resemble the schematic dashed curve in Figure 1, rising almost asymptotically as $d(\log \kappa)/d(\log T)$ approaches 4 somewhere between 6500 and 7000 K. The implication seems to be that T_0 cannot fall far below 7500 K even if the mass-loss rate is enormous. Of course, at low temperatures radiative acceleration becomes more difficult because the opacity is low; this consideration will be mentioned again later. Gradients in $\alpha(r)$ are less crucial than those in $\kappa(r)$ and typically have the effect of changing n by amounts of the order of ± 0.5.

How strongly in $Q(T)$ affected by uncertainty in ξ is...
3D Spectroscopy

- Red: looking at equator. Blueshift ~200 km/s
- Blue: looking into lobe. Blueshift ~500-600 km/s (not the highest S/N...)

[Graph showing three lines labeled 'eta7', 'eta3', 'Ca II 8498', 'Ca II 8542', 'Ca II 8662']
Geometry of Light Echoes

Dust sheet

SN 87A

Observer
Geometry of Light Echoes

Ellipsoids trace out surfaces of constant arrival time

Extra path: 2×10 light years → Light echo after 20 years
Geometry of Light Echoes

Ellipsoids trace out surfaces of constant arrival time

Extra path: 2×10 light years \rightarrow Light echo after 20 years
Geometry of Light Echoes

Ellipsoids trace out surfaces of constant arrival time

Extra path: 2 x 10 light years → Light echo after 20 years
Extra path: 2 x 11 light years → Light echo after 22 years
Geometry of Light Echoes

SN 87A difference image, 2003-2001

22 year light echoes

20 year light echoes