Gravitational waves from binary mergers

R. O'Shaughnessy

10/3/2012 Workshop on Massive Stars, MN

Personal opinions Not speaking on behalf of LIGO or Virgo

Why gravitational waves & binaries?

- Context and provocations : binary evolution
- New window on universe
- Applications
 - Electromagnetic counterparts
 - Measuring the merging binary
 - Nuclear matter and the "cosmological collider"
- What to expect

Context

Detections likely soon

[Abadie et al 2010, arXiv:1003.2480]

Galactic NS-NS : ~ few mergers/Myr

[ROS & Kim 2010, ApJ 715 230]

LIGO range : ~200 Mpc (conservative 1-ifo)

 \rightarrow 10-ish /yr NS-NS mergers

Context

Population synthesis

- Outline of (typical) evolution:
 - Evolve and expand
 - Mass transfer (perhaps)
 - Supernovae #1
 - Mass transfer (perhaps)
 - Supernovae #2

Formation of Hulse-Taylor (B1913+16) Voss and Tauris 2003

Movie: John Rowe

Interaction needed

Kicks on BHs: (assumed) Weak/suppressed

[fallback] Common envelope ~ needed ... + avoid merger as stars

BH-BH binaries **barely merge** – long delays

Formation of Hulse-Taylor (B1913+16) Voss and Tauris 2003

First estimate

Synthetic galactic population

TABLE 1 GALACTIC MERGER RATES $[Myr^{-1}]^a$

Type	${ m Z}_{\odot}$ (100%)	$\begin{array}{cc} 0.1 \ \mathrm{Z}_{\odot} \\ (100\%) \end{array}$	$\begin{array}{c} \rm Z_{\odot} + 0.1 \ \ Z_{\odot} \\ (50\% + 50\%) \end{array}$
NS-NS BH-NS BH-BH TOTAL	$\begin{array}{c} 40.8 \ (14.4) \\ 3.2 \ (0.01) \\ 1.5 \ (0.002) \\ 45.5 \ (14.4) \end{array}$	$\begin{array}{c} 41.3 \ (3.3) \\ 12.1 \ (7.0) \\ 84.2 \ (6.1) \\ 138 \ (16.4) \end{array}$	$\begin{array}{c} 41.1 \ (8.9) \\ 7.7 \ (3.5) \\ 42.9 \ (3.1) \\ 91.7 \ (15.4) \end{array}$

Belczynski et al 2010 [arxiv:1004.0386] Dominik et al 2012 [arXiv:1202.4901]

Low metallicity contribution

Event rate versus metallicity

All low Z star formation (ever) important?

Really? Let nature decide...

TABLE 1 ADVANCED LIGO/VIRGO DETECTION RATES [yr^{-1}] $^{\rm a}$

Model	NS-NS	BH-NS	BH-BH
S	3.9(1.3)	9.7(5.1)	7993.4 (518.7)
V5	3.9(1.3)	9.4(4.8)	8057.8(533.7)
V6	3.9(1.3)	9.3(4.7)	8041.7(523.6)
V7	5.0(1.5)	14.8(8.3)	8130.1(574.2)
V8	3.9(1.3)	1.2(0.3)	172.2(14.0)
V9	3.9(1.3)	11.8(6.7)	8363.6(654.9)
V10	5.2(1.7)	5.7(4.9)	7762.7(487.0)
V11	3.9(1.1)	10.5(6.3)	12434.4(888.1)
V12	11.7(0.8)	7.6(5.8)	8754.6 (275.3)
V13	3.7(0.9)	76.9(62.1)	1709.6(966.1)

Belczynski and Dominik 2012 (1208.0358) mixture: 50% solar, 50% 0.1 solar

Why gravitational waves & binaries?

- New window on universe
- Applications
 - Electromagnetic counterparts
 - Measuring the merging binary
 - Nuclear matter
- What to expect

Binary merger dynamics

Merger dynamics

Merger signal

Signal at LIGO Hanford Observatory **Time-frequency** 1024 1024 512 512 0.50 $M\omega (\chi_i = 0.5)$ Frequency [Hz] Fit to $M\omega$ [2]256 [2 256 0.30 (pg 0.20 W 0.15 128 64 64 0.10 32 32 -0.5 0.5 -0.5 0 -2000 -1200 -1000 -800-400-600Time [seconds] Time (M) Strain vs frequency Strain vs time 10⁻²¹ 0.15 $f_{\rm GW} = 405$ Hz, a = 57.1 km effectively point-particle 0.10 Initial LIG h+ M_{tot} / D 10⁻²² 0.05 0.00 BH-BH tidal effects -0.05 10⁻²³ -0.10 -0.15 AdvancedLIGO NS-NS -0.05-0.04-0.03-0.02-0.010.00 10⁻²⁴ t (s) post Einstein Telescope merger 10⁻²⁵ 100 500 1000 10 50 5000 f (Hz)

Image credits: J. Read, KITP conference 2012; Hannam et al 2010; LIGO blind injection

Beaming and modulation

Polarization changes

Experiments see one line of sight

Measure R,L

- ... if sensitive to both linear polarizations
- Polarization changes over time

Detectors

Prior experience

1203.2674 Initial LIGO, inspiral

Detection and range

Search for model

Unmodeled

Smaller, algorithm dependent range

Signal at LIGO Hanford Observatory 1024-512-512-1024-1024-1

Detection and range

Search for model

Why gravitational waves & binaries?

- New window on universe
- Applications
 - Electromagnetic counterparts
 - Measuring the merging binary
 - Nuclear matter
- What to expect

Berger 2009

- GRB = "collider"
 - GW : input
 - EM : output

Strong EM source (short GRBs)

Rate of events: debated

[GW detection threshold & noise statistics; beaming;

GRB distributions; source mass]

1.0

0.5

0.0

Here's one way:

- Fraction of EM GRB rate [simplifies beaming,L,...]
- BH-NS: possible >~ 1/yr
- NS-NS:

Sensitive to prior (# faint?)

Estimate ~ few % of blind rate

Metzger and Berger 2012

Yunes, ROS et al 2010 Chen and Holz 2012; Kelly et al 2012; Petrillo and Dietz Abadie et al 2012 [1205.2216] In prep: Dietz et al; Nissanke et al

Here's another

- Start with (beamed) GRB event rate/volume
- Correct for beaming

Belczynski, ROS et al 2007

Chen and Holz 2012 Also: Coward et al 2011; Petrillo and Dietz 2012 (102.0804)

Here's another

Extrapolate existing LIGO search (S6 short GRB: 1206.2216)
 90% upper limits on population

GW-triggered EM followup

Faint, isotropic event?

GW localize poorly 10s-100s deg²

Cover out to 200 Mpc ? Mansi = ok

Fairhurst, KITP 2012 Fairhurst 2009

Why gravitational waves & binaries?

- New window on universe
- Applications
 - Electromagnetic counterparts
 - Measuring the merging binary
 - Nuclear matter
- What to expect

Why?

Mass distributions probe supernova physics

Belczynski, ROS, et al ApJ 680 129

Belczynski et al 2012, ApJ 757 91

Why?

Mass distributions probe supernova physics

Why?

BH mass distributions probe

mass loss rate

binary interactions

Z distribution

Why?

BH spin distributions probe J transport in rotating stars Binarity (spinup, stripping)

NS progenitor, Heger et al 2005 ApJ 626 350

Signal at LIGO Hanford Observatory

How

Distribution predictions

Intrinsic Detected

Distribution predictions

Significant variability Easy to distinguish... **if** enough events

Dominik et al 2012 (arXiv:1202.4901)

Bad news: Mass ratio

Very strong signal

- Spin : spin-orbit
 - Bad

Orbit duration: many factors = spin↑or mass↓

Spin

Bad: Orbit duration degeneracy Good: **Precession** modulates Spin encoded **geometrically**

Veitch, KITP Conference 2012

 $\Delta\chi_{90\%}\simeq 0.1 ~~{\rm BH-NS}$

Brown,Lundgren, ROS (1209.3712) Cho et al 2012 1209.4494 + in prep

Why gravitational waves & binaries?

- New window on universe
- Applications
 - Electromagnetic counterparts
 - Measuring the merging binary
 - Nuclear matter
- What to expect

How do GW constrain?

Pre-merger tidal distortion

Tidal disruption

Post-merger remnant Hypermassive NS modes, lifetime Disk modes [weak]

Stack events? [Many faint >> one strong? : Markakis et al 2010 1008.1822]

Pre-merger tidal distortion

$\lambda = \frac{Q}{\mathcal{E}} = \frac{\text{size of quadrupole deformation}}{\text{strength of external tidal field}}$

NS-NS

Hinderer et al 2010, PRD

Damour, Nagar, Villian 2012, PRD

Tidal disruption

Small BH horizon (low M, high a)

Larger NS

Lackey et al, PRD 2012

4.5

3.5

3

2.5

2

1.5⊾ 10

f_{peak} [kHz]

Post-merger remnant

Hypermassive NS modes, lifetime 8 x 10 10^{-2} h_{eff,+}(20 Mpc) at 20 Mpc 10⁻²² 10-10 t [ms] 15 5 20 2 3 Ω 4 f [kHz]

Method: Frequencies of remnant

Systematics:

MRI, neutrino cooling/P support; EOS?

Disk modes

Illinois: Shapiro et al group Lehner; +....

What to expect

• Timeline

- Gradual increase in sensitivity [Abadie et al in prep; Mandic talk]

- Science
 - EM counterparts : engine, host (+nucleosynthesis?)
 - Compact object mass, spin distributions
 - But can we interpret them? Scenarios with robust predictions (fallback-dominated)?
 - Nuclear matter?
 - Possible (stacking weak; high rate; alt noise curve; ...)
 - Systematics? Work in progress (MCMC)