Explosive/Eruptive LBV-like mass loss and Superluminous Supernovae (especially Type IIn)

Nathan Smith University of Arizona/Steward Observatory In Tucson (not ASU in Tempe)

<u>OVERVIEW</u>	SLSN IIn	_{rad} ≈ 10 ⁵¹ ergs <u>SLSN Ic</u>
Examples:	2006gy, 2006tf, 2008fz, 2008am 2003ma, 2010jl, etc. (2002ic, 2005gj, etc.)	2005ap, SC06F6, PTF09atu, PTF09cnd, 2009jh, 2010gx, etc. (2007bi, 1999as, PTF10nmn)
Diversity:	Very diverse	Not so diverse
Line widths:	100-4000 km/s	10,000 km/s
Duration:	100-1000 days	Faster decline (not ⁵⁶ Co)
Temperature:	Usually 6000-7000 K X-rays often self-absorbed	>12,000 K Peak in UV
Engine(s):	cc + CSM int. SN Ia + CSM int. PISN/Magnetar + CSM int.	cc + opaque CSM int. cc + Magnetar (⁵⁶ Ni – PISN)
Progenitors:	Massive eruptive star (LBV-like, pulsational PI) or la	Massive WC/WO-like star (very massive if p-PI or PISN)
Hosts:	Dwarfs, Z ≤ Z _☉	Dwarfs, Z << Z _⊙
Rates:	10 ⁻⁴ to 10 ⁻³ ccSN	10 ⁻⁴ ccSN

DIVERSITY

Type IIn supernovae: Luminosity range → CSM diversity

SN 2006gy	Smith+07,08,10; Ofek+07; Woosley+07
SN 2006tf	Smith et al. 2008
SN 2003ma	Rest et al. 2011
SN 2008am	Chatzopoulos et al. 2011
SN 2008fz	Drake et al. 2010
SN 2010jl	Smith+11, 12; Andrews+11; Stoll+11; Zhang+12

SN 2002icmany many papersSN 2005gjAldering+06; Prieto+??

SN 2008es Miller+09; Gezari+09 (NOT a IIn)

Diversity of CSM for SNe IIn results from a range of CSM mass and distribution (more later)

DIVERSITY

Type IIn spectra:

$$L = \frac{1}{2} w V_{SN}^3 = \frac{1}{2} M \frac{V_{SN}^3}{V_w}$$

Efficient conversion of KE ----- Light

We can observe V_{SN} , V_{w} and L, and thus constrain CSM mass.

SLSN IIn require 10-30 M_{\odot} of CSM ejected a few to 1000 yr before core collapse.

DIFFUSION AT HIGH OPTICAL DEPTH

Weak H-alpha X-rays thermalized

Falk & Arnett (73,77) – hypothetical Smith & McCray (07) – 06gy Smith et al. (10) – 06gy

Shock Breakout In Dense wind

Chevalier & Irwin (11) Ofek et al. (10) Moriya et al. (10,12) Chatzopoulos et al. (12) Ginzburg & Balberg (12)

Efficient conversion of KE ----- Light

$$L = \frac{1}{2} w V_{SN}^{3} = \frac{1}{2} M \frac{V_{SN}^{3}}{V_{w}}$$

Subsequent CSM interaction at lower level → Ha

 $\tau_{diff} = \tau_{exp} = 70 \text{ days}$ (see Falk & Arnett 1973)

We can observe V_{SN} , V_{w} and L, and thus constrain CSM mass.

SLSN IIn require 10-30 M_{\odot} of CSM ejected a few to 1000 yr before core collapse.

CSM INTERACTION

CSM INTERACTION

How extended is the CSM? How long before the SN was the star "active"?

Some SNe IIn are very long lived. SN 1988Z, 2003ma, SN 2005ip, etc.

- See talk this afternoon by Ori Fox
- Smith et al. (2009) discussed possible RSG progenitors. Normal RSGs like Betelgeuse don't cut the mustard. Must be extreme things like VY CMa.
- Mauerhan & Smith (2012). SN 1998S is still going strong. Consistent with 1000yr extreme RSG wind.
- Ask Yoon & Cantiello about it.

CSM INTERACTION

How extended is the CSM? How long before the SN was the star "active"?

Some SNe IIn are very long lived. SN 1988Z, 2003ma, SN 2005ip, etc.

- See talk this afternoon by Ori Fox
- Smith et al. (2009) discussed possible RSG progenitors. Normal RSGs like Betelgeuse don't cut the mustard. Must be extreme things like VY CMa.
- Mauerhan & Smith (2012). SN 1998S is still going strong. Consistent with 1000yr extreme RSG wind.
- Ask Yoon & Cantiello about it.

SUMMARY/QUESTIONS

• Diversity of SNe IIn can be understood with range of CSM mass and geometry.

Bright ones need 10-30 M_{\odot} in few years, decades, or centuries before core collapse. Must have sudden LBV-like precursor eruptions.

Fainter SNe IIn can be extreme RSG winds for ~1000 yr before core-collapse.

• Seems like M > 30 M_{\odot} do indeed explode.

• What the hell is making these stars explode before they explode?

Need mechanism working over few years, decades, centuries, or even 1000 yr.

- Are they all core collapse?
- What are the progenitor stars (really)?

SN 1961V

SN 1961V was probably a real core-collapse Type IIn.

Peak L was 40x brighter than Eta Car's eruption, and brighter than any other SN impostor, but in-line with other SNe IIn (Smith et al. 2011).

V band: by 1970 it was 4 mag fainter than progenitor. Today it is at least 5.5 mag fainter.

Spitzer upper limits to any present-day IR source suggest that the LBV star did not survive (Kochanek et al. 2011)

See however, Van Dyk & Matheson 2011.

If SN 1961V was a core collapse, then we have:

- a clear detection of the very massive (~100 M_{\odot}) LBV progenitor
- detection of a pre-SN eruption, and
- subsequent disappearance of the luminous source.

Present-day H-alpha source might be ongoing CSM interaction

Faded by 4 mag by +10 yrs

Now 5.5 mag fainter than progenitor

SN 2009ip

Luminous, [blue], variable progenitor star (S Dor-like eruption and brief blue eruptions lasting a few weeks)

Quiescent HST progenitor implies $M_{ZAMS} = 50-80 M_{\odot}$

SN 2009ip and optical transient in UGC 2773: spectral diversity

Smith et al. (2010, AJ, 139, 1451)

SN2009ip: looks like "Hot" LBV, Lorentzian profiles, weak P Cyg abs., weak He I lines UGC 2773-OT: looks like "Cool" LBV, F-type supergiant, narrow absorption

Reminiscent of spectra of LBVs in hot/cool states (but not exactly the same).

<u>SN 2009ip</u>

SN 2009ip and optical transient in UGC 2773: spectral diversity

Smith et al. (2010, AJ, 139, 1451)

 $H\alpha$ and most em. lines indicate modest outflow speeds for most of the mass:

SN2009ip: 550 km/s UGC 2773-OT: 350 km/s

SN2009ip also shows evidence for some fast outflow speeds of 3,000-5,000 km/s like Eta Car (Smith 2008).

Very fast ejecta/shock wave... Does CSM interaction make it hot?

<u>SN 2009ip</u>

its 2012 demise

- First discovered In Aug 2009 (Maza et al. CBET 1928)
- Re-brightened in July 2010 (Drake et al. 2010, Atel 2897)
- Re-brightened in July 2012 (Drake et al. 2012, Atel 4334)

DUST MASS

 $M_d \sim 0.1-0.15 M_{\odot}$ in one event! (Smith et al.)

Up to $M_d \sim 0.4 M_{\odot}$ including previous events? (Gomez et al. 2011) Gemini South/Phoenix R=60,000

Smith (2006) ApJ, 644, 1151

Range of Ejecta Speed = 40 - 650 km/s

Follows a Hubble law

Eta Carinae' s 1843 eruption:

Ejected mass = ~15 M_{\odot} KE = 10⁵⁰ erg E_{rad} = 10^{49.5} erg

— KE/E_{rad} ≈ 3

Wind or Explosion?

Massive Dusty Molecular Shell

CLOUDY models: survival of H₂ requires a density of $n_H = 10^{6.7-7}$ cm⁻³ in the outer shell, implying a total gas mass of 17-35 M_{\odot}.

Smith & Ferland (2007, ApJ, 655, 911)

Smith & Frew (2010)

A Model for the 19th Century Eruption of Eta Carinae: CSM Interaction Like a Scaled-Down Type IIn Supernova

Last Friday - arXiv:1209.6155

Nathan Smith*

Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA

 Can we power the 10-year Great Eruption luminosity with a 10⁵⁰ erg explosion and CSM interaction, as in a Type IIn supernova?

$$L = \frac{1}{2} w V_{SN}^3 = \frac{1}{2} M \frac{V_{SN}^3}{V_w}$$

- V_{SN} is now speed of Homunculus (assume 600 km/s)
- Observed luminosity of roughly L=2.5e7 L_{\odot} requires w = 10¹⁸ g/cm

 Is this consistent with everything else we see (Homunculus, etc)?

Attempt #1:

2 explosions (at periastron passages)

Might work but needs to be finely tuned.

Attempt #2:

Explosion expands into slow dense wind of 200 km/s.

$$L = \frac{1}{2} w V_{SN}^3 = \frac{1}{2} M \frac{V_{SN}^3}{V_w}$$

Slow wind has advantage.

Requires Mdot = $0.3 \text{ M}_{\odot}/\text{yr}$ for a few decades.

Works easily... but can it explain everything else?

<u>WHY 200 km/s?</u> 200 km/s is roughly the escape speed for the radius in the 1830s, and 200 km/s was observed in 1890 eruption.

Attempt #2:

Explosion expands into slow dense wind of 200 km/s.

$$L = \frac{1}{2} w V_{SN}^{3} = \frac{1}{2} M \frac{V_{SN}^{3}}{V_{w}}$$

Slow wind has advantage.

Requires Mdot = $0.3 \text{ M}_{\odot}/\text{yr}$ for a few decades.

Works easily... but can it explain everything else?

<u>WHY 200 km/s?</u> 200 km/s is roughly the escape speed for the radius in the 1830s, and 200 km/s was observed in 1890 eruption.

- High ratio of KE to E_{rad}
- Double shells (thin outer shell, thicker inner shell) frozen in
- Single age (Hubble flow)
- Mottled structure in lobes (thin shell instabilities, frozen in)
- Efficient rapid post-shock dust formation (as seen in SNe IIn)
- Fast ejecta outside Homunculus (forward shock accelerates) X-ray shell
- Bipolar shape (already explained Frank et al., Dwarkadas & Balick, etc --- but different parameters...only 10 yr). Did torus come from periastron events?

SN 2005gl

Moderate Luminosity Type IIn supernova: Narrow H lines

Progenitor star was very Luminous: $M_V = -10.3$ or L = 1.1×10^6 L_{\odot} Implies $M_{ZAMS} \ge 50$ M_{\odot}

Progenitor mass-loss rate about 0.03 M_{\odot} /yr: like P Cyg in 1600 AD

Faded by
The progenitor star of SN 2005gl faded after the supernova event.Faded by
>1.5 magLBV progenitor V=24.1 magNo survivor V>25.6 mag

Gal-Yam & Leonard Nature (2009)

SN 2010jl

Very luminous Type IIn supernova (-20.something) Bright blue source at SN position: $M_{F300W} = -12$ (either massive young cluster or very luminous progenitor star)

Implies $M_{ZAMS} \ge 30 M_{\odot}$

Smith et al. (2011)

SN 2010jl

Very luminous Type IIn supernova (-2 Bright blue source at SN position: M_{F3} (either massive young cluster or ver

Implies $M_{ZAMS} \ge 30 M_{\odot}$

Smith et al. (2011)

SN 1961V

-16

-14

10

-8

Absolute magnitude

SN 1961V was probably a real core-collapse Type IIn.

Peak L was 40x brighter than Eta Car's eruption, and brighter than any other SN impostor, but in-line with other SNe IIn (Smith et al. 2011).

V band: by 1970 it was 4 mag fainter than progenitor. Today it is at least 5.5 mag fainter.

Spitzer upper limits to any present-day IR source suggest that the LBV star did not survive (Kochanek et al. 2011)

See however, Van Dyk & Matheson 2011.

If SN 1961V was a core collapse, then we have:

- a clear detection of the very massive (~100 $M_{\odot})$ LBV μ
- detection of a pre-SN eruption, and
- subsequent disappearance of the luminous source.

Present-day H-alpha source might be ongoing CSM intera

Days

SN 1961V

Van Dyk & Matheson 2011, Chu et al. 2004

If SN 1961V was a core collapse, then we have:

- a clear detection of the very massive (~100 M_{\odot}) LBV progenitor
- detection of a pre-SN eruption, and
- subsequent disappearance of the luminous source.

Present-day H-alpha source might be ongoing late-time CSM interaction

A BLAST WAVE FROM THE 1843 ERUPTION OF ETA CARINAE?

Spectra of [N II] reveal *fast* material with Doppler shifts up to ~3000 km/s.

True velocities of 5000 to 6000 km/s.

80

60

40

20

0

-20

-40

-60

20" E

-4000

Position (arcsec)

Numerical simulations of continuum-driven super-Eddington winds

Van Marle, Owocki, & Shaviv 2009

Photon tiring...

G = 10

<u>DUST</u>

SLSNe IIn have IR echoes from circumstellar dust shells

IR/optical echo: Massive dust shell at R=0.5-1 light year (ejected 1500 yr before SN). Smith et al. 2008, ApJ, 686, 485 Smith et al. 2010, ApJ, 709, 856 Miller et al. 2010, AJ, 139, 2218

Requires 0.05-0.1 M_{\odot} of dust (5-10 M_{\odot} total mass).

Multiple massive shell ejections, 8 yr before and ~1500 yr before.

SLSNe IIn have IR echoes from circumstellar dust shells

IR Echoes from normal SNe IIn (not SLSNe) are common too.

Fox et al. (2011)

However, asymmetric line profiles also indicate **new dust formation** in post-shock gas.

Smith et al. (2012)

