

THE UNIVERSITY OF CHICAGO

Kavli Institute for Cosmological Physics At THE UNIVERSITY OF CHICAGO

Future research of ${}^{12}C(\alpha,\gamma){}^{16}O$

Claudio Ugalde

¹²C(α,γ)¹⁶O Reaction

Key reaction for stellar structure, evolution, and nucleosynthesis in stars.

Affects the synthesis of most of the elements of the periodic table

Determines whether for a given initial mass, a star will become a black hole or a neutron star

Sets the C to O ratio in the universe

The variation of the C/O ratio in the progenitor might be a cause of the variation of SNIa brightness

Determines the minimum mass a star requires to become a core collapse supernova

Affects the constraints on the age of stellar populations from White Dwarfs

Rolfs and Rodney, 1988

$$N_A \langle \sigma \upsilon \rangle = N_A \sqrt{\frac{8}{\pi \mu (kT)^3}} \int_0^\infty \sigma(E) E \exp\left(-\frac{E}{kT}\right) dE$$

Bubble chamber

C. Ugalde^{1,7}, B. DiGiovine¹, D. Henderson¹, R. J. Holt¹, K.E. Rehm¹, A. Robinson⁷, A. Sonnenschein⁴, A. Tonchev^{2,5},

R. Raut^{2,5}, G. Rusev^{2,5}, A. Champagne^{2,3}, N. Sturchio⁶

¹Argonne National Laboratory, ²Triangle Universities Nuclear Laboratory, ³University of North Carolina at Chapel Hill, ⁴Fermi National Accelerator Laboratory, ⁵Duke University, ⁶University of Illinois at Chicago, ⁷University of Chicago

- The target density is 1000-10000x higher than gas targets.
- Superheated water will nucleate from α and ^{12}C recoils
- The detector is insensitive to γ -rays.
- -Prototype tested at $HI\gamma S$

Outlook

Kunz 2001

N1= 2×10^{18} Carbon implanted particles N2= 0.5 mA = $3.12 \times 10^{15} \alpha$ -particles/s

in 1 year N1 N2 = 1.97×10^{41} Yield = 2 events in one year

DIANA + JENSA (DUSEL)

N1= $1x10^{19}$ helium particles gas target N2= 10 mA =6.24 x 10^{16} carbon part/s

in 1 year N1 N2 = 1.97×10^{43} Yield = 200 events in one year

LUNA-MV (Gran Sasso)

N1= $2x10^{18}$ Carbon implanted particles N2= 0.5 mA = $3.12 \times 10^{15} \alpha$ -particles/s

in 1 year N1 N2 = 1.97×10^{41} Yield = 2 events in one year Bubble + $HI\gamma S2$

N1= 3.35×10^{23} particles in liquid target N2= $2 \times 10^{10} \gamma/s$

```
in 1 year
N1 N2 = 2.11 \times 10^{41}
Reciprocity -> \times 100
Yield = 200 events in one year
```

Next generation light sources

ELI-NP, Romania 2015 V. Zamfir 2011

Phase 1 Very intense ($10^{13} \gamma$ /s), brilliant γ -ray beam, 0.1 % bandwidth, with E= 19 MeV

Phase 2 (2018-2020) -> 10¹⁵ γ/s

Bubble + ELI-NP (Phase 1)

N1= 3.35×10^{23} particles in liquid target N2= 1 x $10^{13} \gamma/s$

in 1 year N1 N2 = 2.11×10^{44} Reciprocity -> $\times 100$ Yield = 200,000 events in one year

Conclusions

The above considerations apply to other (X, γ) processes for which suitable stable liquid targets can be found. Examples include ¹²C+¹²C, 3 α ->¹²C, ²²Ne(α , γ), and other (p, γ) and (α , γ) reactions.

In particular, the ${}^{12}C(\alpha,\gamma)$ reaction has remained unimproved for more than 10 years. Any crazy ideas are now welcome.

Thanks!

Astrophysical S-factor for ${}^{12}C(\alpha,\gamma){}^{16}O$

$$S = E\sigma e^{(2\pi\eta)}$$

Stellar helium burning at E=300 keV

Kunz 2001 (Stuttgart)

•4 MV Dynamitron, 480 μA ⁴He beam
•1²C implanted targets on gold substrate
•4 large HPGe, with active BGO shield

Photomultiplie

E=1.254 MeV

E=0.945 MeV

Gai 2005 (Avery Point)

Kyushu (Japan)

•10 MV Tandem, 15 pµA ¹²C beam
•Pulsed beam
•⁴He windowless gas target
•Detection of ¹⁶O (one charged state)
•Recoil separator
•Target took 15 years to develop
•24 torr, 4.5 cm thick (world record)
•5 counts/day @ Ecm=0.7 MeV
•BG reduction 10¹⁶ so far (need x1000 better)

- •γ ray beam, Shanghai Laser Electron Gamma Source (SLEGS)
- Polarized photons
- •3.5 GeV electron beam
- •Light source CO₂ laser @10 kW
- •Beam flux 5 x $10^8 \gamma$ /s @ 2% resolution
- •Time projection chamber (???)
- •Could measure E=0.8 MeV with 20-30% uncertainty

St. George (Notre Dame)

- •Windowless gas target (HIPPO) @ 2.7x10¹⁷ atoms/cm², 2.1 mm
- •High beam currents (< 10 mA)
- •Array of Ge detectors in close geometry

Erna (Caserta)

- •Recoil mass separator
- •Time of flight capabilities
- •3 MV Pelletron
- •Windowless gas target 4x10¹⁷ atoms/cm²

Underground facilities

Surface background rates: events/second

LUNA MV (Gran Sasso) CUNA Canfranc (Spanish Pyrenees) Felsenkeller (Dresden) *Not deep enough* Boulby (North Yorkshire) *Uncertain funding* The National Academies 2012

Kamioka

Asia

CJPL

DIANA (DUSEL)

- •Deep Underground facility
- •Ultra high density gas target (JENSA collaboration)
- •High beam currents (~10 mA)
- •Array of Ge detectors in close geometry

Experiment Luminosities

¹²C(α,γ)¹⁶O Lum(Kunz) ~ 8x10³³ cm⁻²s⁻¹ Efficiency ~ 1x10⁻³

¹⁶**O(**γ,α)¹²**C** Lum(HIγS) ~ 4x10³⁰ cm⁻²s⁻¹ Lum(JLab) ~ 8x10³¹ cm⁻²s⁻¹

 $\lambda_{\gamma}^{2}/\lambda_{\alpha}^{2} \sim 60$ Bubble chamber: solid angle x efficiency = 100%

Lum = (beam current) x (target density)

Expt	Beam current (mA)	Detector Effic. (%)	Target	Meas. Time (h)
Redder	0.7	Ge, 35	12C, ~3E18	900
Ouellet	0.03	Ge, 30	12C, 5E18	1950
Roters	0.02	BGO, 270	4He, 1E19	5000
Kunz	0.45	Ge, 100	12C, 3E18	700
EUROGAM	0.34	Ge, 70	1E19	2100

Bubble chamber

We completed both the first test of the prototype of the bubble chamber detector and the characterization of the main sources of background for the experiments.

We have provided a proof of principle of operation as a low rate counter and proposed a scheme for higher count rates.

The thin glass vessel appears to be the best design for a water-based bubble chamber.

Bremsstrahlung from the electrons in the ring manifests mainly as neutrons. Particle ID would help separating these events from the α -particle + heavy ion signal.

In the long run, the success of the project will depend on beam intensity, the level of depletion of water, and particle ID.

 $N_A \langle \sigma \upsilon \rangle = N_A \sqrt{\frac{8}{\pi \mu (kT)^3}} \int_0^\infty \sigma(E) E \exp\left(-\frac{E}{kT}\right) dE$

N₁,N₂

Superheating of water

FIG. 1. Partial energy-level diagram for 16 O (adapted from [4]).