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Abstract. We have developed several improved techniques because standard re-
duction software was inadequate for the Treasury Project on η Carinae. Though
adapted specifically to HST/STIS/CCD data, some of these methods can be useful
for images obtained with other instruments. For instance, our subpixel modeling
technique reduces some of the evil effects of marginal sampling, i.e., in images where
the pixels are moderately too large to take full advantage of the instrument’s basic
p.s.f. Marginal sampling causes the apparent p.s.f. to depend on precise location in
the pixel grid, a subtle effect that perturbs measurements. Our method considerably
reduces the amplitude of this phenomenon.

1. Preliminary Comment: Not Just Spectroscopy

The techniques sketched here were motivated by intensive STIS spectroscopy of one object.
But their usefulness is far more general; they can be applied to a broad class of images
obtained with various instruments. Whenever the p.s.f.’s FWHM is between about 1 and 3
pixel widths, one should consider “subpixel modeling” as outlined in Section 4.

2. The Role of η Carinae Concerning HST Data in General

Before getting into data processing techniques, let me frankly indulge in some advertising
which serves a valid purpose here. Most astronomers have a nodding acquaintance with η
Car: a very massive star with intense, ostentatiously bipolar ejecta. The degree of structural
complexity, however, and the surprisingly basic unsolved problems lurking there, are less
well known.1 Together these characteristics have made Eta unique in HST’s record:

• The ejecta are spatially complex on size scales of 0.01 to 10 arcsec;
• They and the star are spectrally complex too, with thousands of identified emission lines;
• At least six distinct types of spectra are found there, relevant to diverse problems;
• And some of those spectra vary systematically in time.
• Thus we have needed excellent spatial and spectral resolution, appreciable spatial coverage,
broad wavelength coverage, and repeated observations, all together.
• Both the star and its ejecta are bright enough to make such observations feasible without
requiring huge amounts of telescope time.

Scarcely any other major HST target shares this combination of attributes. As a re-
sult, η Car has consistently provided unusual illustrations of HST’s capabilities. (Why this
matters to us here, will become evident in the next paragraph.) Since 1991 this object
has held the record for angular resolution in spectroscopy of a complex target, first with

1For general information about this object, see Davidson & Humphreys (1997) and three proceedings volumes:
Humphreys & Stanek (2005), Gull et al. (2001), and Morse et al. (1999). The HST Treasury Program for
Eta has produced numerous scientific results, but here we’re concerned with data techniques.
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the FOS, then GHRS, and, since 1998, with the STIS. I honestly can’t think of another
object that demonstrated the STIS as well – for instance, almost nothing else was observed
across the entire wavelength range, as we did repeatedly for Eta. Several HST instru-
ments have been used intensively on this object, close to their resolution limits, sometimes
with unconventional techniques. The 72-orbit Treasury Project obtained a vast number of
meaningful data pixels (more than a typical multi-hundred-orbit extragalactic program, for
instance), because many integrations could be obtained in each orbit and because of the
extended structure.2 In some respects this was the most ambitious spectroscopic program
ever attempted with the HST.

Standard reduction software and standard information about the instrument proved to
be inadequate for such intensive observations. Therefore, entirely apart from scientific goals,
these data were and are valuable in three practical ways: (1) They clearly and quantitatively
revealed various glitches in the STIS/CCD and in the data reduction procedures; (2) they
forced us to develop techniques to reduce those problems; and (3) they provide a unique,
public archival record of instrument characteristics as functions of time. The entire set of
STIS data on η Car, including pre-project observations incorporated into the overall data
set, extend from 1998.0 to 2004.2, most of the instrument’s working life.3

We hope these facts may be useful for improved analyses of existing STIS data on other
objects – particularly those where the spatial resolution proved to be unsatisfying because
of shortcomings in the reduction software, not the instrument itself (see below). Some of
the techniques can be applied to other instruments as mentioned earlier.

3. A Brief List of Glitches

Thus, as foreseen in the original proposal, a substantial fraction of our effort in the η
Car Treasury Program has gone into improving the STIS/CCD data processing methods
and assembling a convenient, somewhat unusual data archive. In this section I’ll just list
the main difficulties we’ve dealt with; here “we” means mainly John Martin, Kazunori
Ishibashi, and myself, the persons working on these development tasks.4 Additional in-
formation on the following effects and techniques can be found at the project website,
http://etacar.umn.edu.

(1) At UV to visual wavelengths the STIS CCD provided only marginal spatial sampling
– i.e., the 0.05 arcsec pixel size was undesirably large relative to the p.s.f. width. With
standard software, this fact severely degraded the spatial resolution of spectroscopy. The
reason, which concerns variations in local sampling, is more complicated than one might
assume at first glance. In order to get resolution better than 0.2 arcsec with this instrument,
one must extract a spectrum less than 4 CCD rows wide. Since a spectral “trace” is slightly
tilted relative to a CCD row, the spatial sampling varies as a function of wavelength; at some
detector columns the spectrum of a point source coincides with a row center, while at others
it falls midway between two rows. With normal interpolation methods, this systematic
variation in sampling causes any narrow continuum extraction to appear “scalloped” or
wavy. If one attempts to observe a target near another object, the contamination cannot
accurately be subtracted out – at least, not with standard software – because its undulations

2Of course 72 orbits is a big number by most users’ standards. But those orbits were required to study
intricate variations applicable to several branches of astrophysics, not just a basic set of spectra.

3One potentially useful detail: Certain ejecta blobs have rich spectra of narrow, well-classified emission lines,
which provide supplementary wavelength calibrations.

4For some purposes Matt Gray, Michael Koppelman, J. T. Olds, and R. M. Humphreys should also be
included in the list. Other project CoI’s have been concerned mainly with various aspects of the scientific
results, as planned.
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generally differ in both phase and amplitude from those of the target object. We suspect
that this phenomenon discouraged some early STIS users from making further attempts
to do high-spatial-resolution spectroscopy. Dithering could have improved the sampling
but was not always feasible – for instance, we didn’t have enough telescope time to dither
the Treasury Project spectroscopy. Fortunately, a technique sketched in Section 4 below –
essentially a novel form of pixel interpolation – provides a considerable improvement. This
method can be applied to existing STIS data and to other image data whose pixels are
somewhat larger than one would have preferred.

(2) Because our subpixel modeling technique (effect 1 above and Section 4 below)
depends on local arrays of about 20 pixels, it was necessary to eliminate practically all bad
pixels – hot pixels, cosmic ray hits, etc. Therefore we employed a bad-pixel identification
method in addition to the normal CR-SPLIT procedure. To test each pixel, our software
analyzed the dispersion of pixel values in a 5 × 5 sample array centered at that location.
This technique works rather well even if only one image is available, i.e., if no CR-SPLIT
companion image exists.

(3) The complete STIS/CCD wavelength range, UV to far red, required about 30
grating tilts. In order to produce a unified spectral image covering the entire range, we
need to splice each adjoining pair of images. However, there is an unexpected complication:
the detector was not uniformly focussed. In fact the p.s.f. was generally sharper at the
longer-wavelength side of each image. Therefore we have had to develop a convolution
procedure to make adjacent wavelength samples match in their overlap region. This is
further complicated because tiny variations in pointing caused the apparent star/ejecta
brightness ratio to vary somewhat.

(4) Each STIS/CCD spectral image contains several types of “ghosts” with various
intensities and size scales. We have parametrized the worst of these, especially those with
small size scales. With this information they can be reduced by a simple procedure that
basically amounts to Jansson – Van Cittert deconvolution.

(5) The STIS/CCD spatial p.s.f. had asymmetric wings. We have measured the pa-
rameters necessary to reduce this effect, in much the same manner as effect 4 above.

(6) Suitable ERR arrays – local noise levels stored in each FITS file – are not entirely
obvious. In particular, when the stored pixel values have been produced by interpolation
between original data pixels (see Section 4 below), then one should not store the mathe-
matically correct r.m.s. error for each interpolated pixel. Reason: The interpolation process
causes adjacent pixel values to be correlated with each other. In that case one cannot esti-
mate the true error of a sum of pixels merely by taking a quadratic sum of the individual
formal errors. – I recognize that these comments may seem a little cryptic, but a full ex-
planation would take too much space here so the reader is invited to examine the problem
himself/herself. The point is that the ERR arrays in some pipeline-processed STIS images
are misleading, and don’t contain enough information to reconstruct the true error in a sum
or average of many pixels. In fact an uncritical application of them will usually lead to an
underestimate of the noise level, sometimes a serious underestimate.

There are other difficulties but these are probably the most troublesome. Items 1, 2,
and 6 apply to image data in general, and effect 3 might also have applications beyond
STIS. The remainder of this paper concerns item 1.

4. Optimum Subpixel Modeling

For quantitative work we usually need to correct optical distortions, to rotate the image, to
make position measurements, etc. These tasks require some form of interpolation between
the original pixel locations. Often this “subpixel modeling” is implicit or hidden in the
software, but it is essential; and marginal sampling makes it trickier.
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Figure 1.: The dashed curves represent a function with FWHM = 1.5 pixels. The continuous
curves are spline fits to the sample points shown as dots. Here f(x) is the square of a
Lorentzian, [ 1 + α(x − xc)

2 ]−2, which closely resembles the p.s.f.’s found in STIS/CCD
data.

By “marginal sampling” I mean any case where the p.s.f. width (FWHM) is between,
roughly, 1 and 3 pixel widths. Sampling naturally degrades the average resolution, but that
isn’t the main problem. Explanations are easier if we idealize the situation in two ways:
(1) Rather than a two-dimensional image f(x, y), let’s consider the one-dimensional case
f(x). Our unit of x will be the original pixel width. (2) In a real image each pixel value is
some sort of average across the pixel, but it’s easier to discuss uniformly spaced samples of
a continuous function, fi = f(xi). Neither of these simplifications affects the basic problem;
the approach described below can be generalized to real data.

Figure 1 shows a function – maybe a p.s.f. – sampled with two different pixel offsets.
In Fig. 1a the peak coincides with a data point (a pixel center), and a cubic spline through
the data points matches the function pretty well. In Fig. 1b, however, the peak falls midway
between two sample points; then the spline fit is much worse, with a severely depressed peak
and a broadened profile. Evidently the effective p.s.f. depends on a point source’s location
on the detector. This fact is fundamental, not merely a consequence of the interpolation
scheme. The sampling is blind to some information near and beyond the critical Fourier
frequency ωc = π pixel−1, and the precise location of the pixel grid determines which Fourier
components are lost. One doesn’t notice the resulting spatial fluctuation of the p.s.f. when
viewing an image, but it affects measurements. This phenomenon is responsible for the
undulations in narrow spectral extractions, effect 1 in Section 3 above. Incidentally, one
can show that deconvolution methods don’t help this problem much.

In principle the effective sampling frequency can be improved by “dithering,” taking
multiple exposures with fractional-pixel relative offsets. But dithering requires extra effort
and can be inefficient in telescope usage; it depends on reliable, extremely precise offset
pointing; it can fail for various reasons without the failure being obvious; and sometimes
one simply doesn’t have enough telescope time. A consistent resolution of about 2 pixels
(e.g., 0.1 arcsec with the STIS/CCD) can be attained without dithering, if we use a special
technique outlined below. This subpixel modeling technique greatly reduces the spatial
variation of the p.s.f.

Here’s our plan. We use the original data points to generate a related function g(x)
with the following goals:
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1. g(x) approximates f(x) as closely as possible without excessively violating requirement
2 below. Function g(x) will turn out to be a blurred version of f(x) and of course we
hope to minimize the blurring.

2. A second goal, motivated by Fig. 1, distinguishes our effort from ordinary interpola-
tion: The calculated shape of g(x) must depend as little as possible on the location of
f(x) relative to the pixel grid. For instance, imagine two images f1(x) and f2(x) with
the same shape but relatively offset by half a pixel: f2(x) = f1(x − 0.5). We design
the corresponding g-functions so that g2(x) ≈ g1(x − 0.5) as accurately as feasible.
As Fig. 1 implies, this requirement is subtle. It isn’t easy to achieve without heavy
blurring.

3. Based on f(xi) at integer points xi = i, we calculate g(xk) with half-integer spacing,
xk = k/2. Since this reduced interval provides decent sampling, we can later estimate
g(x) at any other point by conventional interpolation.

Goals 1 and 2 tend to conflict with each other, so the “best” solution for any given data set
is a compromise. Moreover, since quantitative criteria depend on the specific application,
there can be no universal solution. Our reasoning will be fairly general.

Since the procedure for generating g(x) must be linear in f(x), each output sample
point g(xk) must be a linear combination of nearby input data f(xi). We further assume
symmetry between the positive and negative x-directions; this is not strictly true for some
instruments (including STIS) but it’s a good practical approximation that greatly simplifies
the effort. These two requirements determine the formula for locations that coincide with
the original data points xi. If xk is an integer, then

g(xk) = A0 f(xk) +
M−1
∑

n=1

An · { f(xk − n) + f(xk + n) } , (1)

where the An are constant coefficients. Similarly, for the intermediate output points where
xk = integer + 1/2,

g(xk) =
N−1
∑

n=0

Bn · { f(xk − 0.5 − n) + f(xk + 0.5 + n) } . (2)

In a practical scheme M and N will usually be 2, 3, or 4. “Conservation of counts” requires

A0 + 2
M−1
∑

n=1

An = 2
N−1
∑

n=0

Bn = 1 . (3)

Moreover, if
M−1
∑

n=1

n2 An =
N−1
∑

n=0

(2n + 1)2 Bn = 0 , (4)

then g(x) exactly matches f(x) if the latter is any cubic polynomial. Constraint 3 is essential
but 4 is not.

Let me emphasize that any linear symmetric scheme will be equivalent to eqns. 1 and
2, even if it’s presented in terms of Fourier analysis or other math language.5 |An+1| tends
to be much smaller than |An| and formula 1 either blurs or sharpens f(x), depending on

5If we drop the assumption of symmetry in the x-direction, then we still have linear combinations of f(xi),
but with almost twice as many coefficients.
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whether A1 is positive or negative. For reasons that I don’t have space to prove here, we
must accept the former, the blurred case. Formula 2 is like standard interpolation but the
coefficients are based on non-standard criteria. If we later generalize to realistic pixels, i.e.,
local averages of f(x), only the coefficient values will be altered.

The coefficients An and Bn will be based on goals 1 and 2 stated earlier. A criterion
for goal 2 can be defined as follows. First, choose a test function f(z) like that shown in
Fig. 1; here we’ll use coordinate z = x − xc instead of x, where xc is some arbitrary offset.
The test function peaks at z = 0, it’s normalized so that f(0) = 1, and it resembles the
instrumental p.s.f. Consider any particular value of z. If we sample the function at z, z±1,
z ± 2, etc., then a g-value can be calculated from eqn. 1:

gA(z) = A0 f(z) + A1 · {f(z − 1) + f(z + 1)} + ...

If, instead, we sample it at z ± 0.5, z ± 1.5, etc., then eqn. 2 becomes applicable:

gB(z) = B0 · {f(z − 0.5) + f(z + 0.5)} + B1 · {f(z − 1.5) + f(z + 1.5)} + ...

The difference gB(z)−gA(z) indicates the local departure from requirement 2. A reasonable
measure of the overall discrepancy is

EAB =
[

∫

+∞

−∞

{gB(z) − gA(z)}2 dz
]1/2

. (5)

We adjust the coefficient sets An and Bn to minimize EAB, subject to other requirements.
Parameter space must be explored with many calculations – at least I haven’t thought of
any other way to do it. For some applications, it may be useful to emphasize selected parts
of the p.s.f. by means of a weighting function w(z) in the above integral.

Fourier considerations show why there is no really satisfying set of coefficients. If the
test function f(z) is symmetric, then we need only the cosine transforms F (ω), GA(ω),
and GB(ω), referring to f(z), gA(z), and gB(z). Then formulae 1 and 2 have the following
effects:

GA(ω) = HA(ω)F (ω) and GB(ω) = HB(ω)F (ω) ,

where
HA(ω) = A0 + 2A1 cos ω + 2A2 cos 2ω + ... ,

HB(ω) = 2B0 cos 0.5ω + 2B1 cos 1.5ω + ...

HA(ω) and HB(ω) are filtering functions that dampen Fourier components near the critical
frequency ωc = π, and the parameter EAB (eqn. 5) can be expressed in terms of a frequency
integral of { (HB −HA)F }2. Our “goal 1” stated earlier requires a rapid cutoff as close as
possible to ωc, while goal 2 requires HA(ω) ≈ HB(ω). Unfortunately, as Fig. 2 (next page)
shows, the two filtering functions are largely incompatible at high frequencies – because
dHA/dω = 0 and HB = 0 at ω = ωc, two very different conditions. Moreover, HA and HB

have opposite slopes above the critical frequency. Since these are fundamental consequences
of the sampling, goals 1 and 2 cannot both be satisfied to high accuracy.

Finding a suitable compromise is difficult. We can force HA to HB resemble each other
for ω < ωc by imposing the additional constraints HA = 0 and dHB/dω = 0 at ωc. Then,
however, we find that the cutoff occurs at lower-than-desired frequencies, which means that
g(x) is severely blurred compared to the test function f(z). In order to lessen the blurring,
we must accept a set of coefficients that causes HA to dip slightly below zero at ωc where HB

automatically passes through zero. This gives acceptable results provided that the cosine
transform F (ω) is small at the critical frequency – which is a fancy way of saying that f(z)
must not be too narrow.
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Figure 2.: General shape of the filtering functions HA(ω) and HB(ω) for typical sets of
coefficients. At the critical frequency, HA is level while HB passes through zero. (The
particular coefficients used here do not give a useful solution to our problem, but were
chosen merely to illustrate behavior near ωc.)

Figure 3.: Interpolation envelopes for (a) linear interpolation, (b) spline interpolation, and
(c) eqns. 1 and 2 with coefficients mentioned in the text. In each case the solid curve
represents the instrumental p.s.f. before it is sampled by the detector. After sampling
and interpolation, the effective p.s.f. depends on the precise subpixel location of the point
source (compare Fig. 1); gray areas here represent the envelopes of interpolated values for
all possible pixel-grid offsets.
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In fact the necessary blurring doesn’t hurt as much as one might imagine. Referring
back to Fig. 1, the effective output p.s.f. will be a little broader than the solid curve of
case 1b. This appears much worse than 1a. But the resolution shown in Fig. 1a is largely
illusory; it depends on placing the pixel grid in an advantageous position and then knowing
that this has been done. Fig. 1b gives a more realistic impression of the true resolution for
most applications. I emphasize again that any linear symmetric procedure will be basically
equivalent to this one, even if it’s described in different words and equations.

Here I won’t recommend specific An, Bn coefficient values, for three reasons: Several
alternatives would need to be listed because the criteria depend on instrument parameters;
frankly I’m not yet sure which choices work best in general; and, anyway, this isn’t a
reference work. One very simple example is worth noting, though. Early in our Treasury
Project work, before being fully aware of all the above considerations, we chose the following
coefficients for STIS/CCD data: A0 = +0.77, A1 = +0.165, A2 = −0.05, B0 = +0.58, and
B1 = −0.08. These were applied to real pixel values, not function samples f(xi). Fig. 3
shows results compared to linear and spline interpolation used in most software. For any
method, the effective output p.s.f. depends on the point source’s precise subpixel location
as explained earlier. The solid curve in the figure represents a pre-detector p.s.f.; the other
curves in the figure are broader and lower because they represent averages over realistic
pixels. Each shaded area is an envelope of profiles that occur for all possible subpixel
locations.

As Fig. 3 demonstrates, our method (with the coefficients noted above) produces a
substantially tighter envelope than either linear or spline interpolation. On the other hand
it is not as good as we would like. This figure portrays the behavior of blue-wavelength
STIS data quite well, and here I’ve neglected some details – such as wriggles in the profile
wings – too complicated to discuss now. Increasing the number of coefficients produces a
modest, not dramatic, improvement in performance.

For more information see http://etacar.umn.edu.
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