
 

Technical memo number 2 -- February 2004 

THE STIS CCD CROSS-DISPERSION POINT SPREAD FUNCTION
                                        John C. Martin,   University of Minnesota 

  
  (If you use information or advice from this memo, please acknowledge it and 

e net site  http://etacar.umn.edu  in any resulting publications;  thanks.) th
  

 
1.  Introduction 

This report to outlines the work done by the Eta Carinae HST Treasury Project to 
determine the properties of the cross-dispersion point spread function for the HST Space 
Telescope Imaging Spectrograph (STIS) CCD.  In this document we will refer to the 
cross-dispersion point spread function by the abbreviation: XSF.  The goal of this work is 
to give a model for the STIS/CCD XSF which can be calculated as a function of 
wavelength and CCD column number.  The intended uses of this model include:  
calculating  STIS CCD slit throughput corrections, re-calibrating the absolute flux scale 
for the STIS CCD, and deconvolving the observed cross dispersion profiles for extended 
sources. 

The XSF is not a simple symmetric Gaussian or modified expediential function.  It is 
complicated by a feature which appears separated from the profile maximum by 0.05” to 
0.20”  at 5% to 10% the peak value (i.e. Figure 2, 1 pixel = 0.05”).  This feature is not to 
be confused with the STIS “ghost” (Hill, 2000) which manifest’s itself at a much larger 
separation from the XSF peak along a line connecting the peak and the optical axis of the 
instrument.  The “ghost” and this feature may be related but that has not been determined.  
We have focused here on practical modeling based on high signal to noise observations 
of standard stars rather than working out a theoretical basis from first principles. 

Scattered light also contributes to the XSF at a relatively low level which can be 
approximated as a constant on the order of 0.1% of the peak value across the 10 to 20 
CCD rows used to fit the two peak XSF.  A more detailed model of the scattered light 
contribution is left for another document. 

 
2.  The Model 

This XSF model is composed of two squared Lorentzian peak function, one a fraction of 
the amplitude of the other and with their centers offset from each other.  The square 
Lorentzian form was chosen because fits the wings of the distribution much better than a 
Gaussian or modified expediential function.   A constant level was included in the model 
to account for the contribution of scattered light to the XSF.  We also assumed that the 



flux distribution is one dimensional on the cross dispersion axis in order to avoid 
complicated integration of the slit profile in the dispersion direction.  The resulting model 
takes the form: 
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Where: 

a = the width of the profile 
b = the fractional difference in amplitude between the main and secondary peak 
c = the offset of between the peaks in pixels 
d = constant background level which simulates the scattered light contribution 
p = maximum peak value 
z = the row number where the maximum peak value resides 

Parameters a, b, c, and d are values which can be solved for as a function of wavelength, 
CCD column number, and date.  In contrast, parameters p and z depend on the spectral 
flux of the source its position on the slit.  An illustration of the model appears in Figure 1. 

 

Figure 1  An illustration of how the two peak model adds up. 

This model describes the actual flux distribution while each pixel value is really the flux 
distribution integrated over the pixel’s surface area.  Therefore, to fit the actual observed 
XSF, we must integrate f[x].  This is represented by the function F[x]: 
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Given F[x], we assumed that each pixel has a uniform sensitivity across its surface and 
that no significant gaps exist between pixels to arrive at: 
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3.  Determining the Model Parameters 

The six free parameters in the model were simultaneously fit to actual data by a modified 
Levenberg-Marquart method which was developed and rigorously tested in-house.  The 
data fit are bias subtracted and flat fielded observations of BD +75 325 and AGK +81 
266 obtained through the HST archive at MAST.  The data was not “rectified” since any 
scheme which interpolates the pixels introduces noise into the data.  

In a non-rectified STIS CCD image, the dispersion axis is tilted slight with respect to the 
CCD so that the central peak of the distribution crosses several rows as it travels from 
one side of the detector to the other. The observed XSF was extracted by computing the 
median pixel value for each CCD row in ten consecutive columns.  We fit the observed 
XSF up to 200 times across the CCD by starting in column 10 and making cuts at 
intervals of 5 columns to column number 1010.  The columns on the edge of the CCD 
were excluded because they tend to be anomalous.  A typical fit appears in Figure 2. 

 
Figure 2  A fit of the XSF by the two peak model 

  



The fits were graded with respect to quality using a chi square statistic and data from 
poorest quality fits were discarded.  We used the best fit a, b, and c parameters to 
determine how they vary with relation to grating, wavelength (λ in angstroms), and CCD 
column (y in pixels).  The relations determined for each parameter are as follows: 

Peak width (a): (Figure 3 & Figure 4) 
For the G230MB grating:   

275 )1053.1()1006.4(284.1 yya −− ×−×−=  

For the G430M grating: 
λ)1090.1()1083.3()1048.6(411.1 5274 −−− ×−×+×−= yya  

For the G750M grating: 
2-84274 )10(2.41)1006.3()1064.1()1074.2(190.2 λλ ×+×−×+×−= −−− yya  

Relative amplitude of peaks (b):  (Figure 5) 
If (λ >2473 Å) then  

284 )10038.1()10263.1(2488.0 λλ −− ×−×+−=b
Else b=0.0 

Separation of peak centers (c):  (Figure 6) 
λ)1096.2( 4−×=c  

 
 

 
Figure 3   Width of the peak (a) as a function of wavelength at the center of the CCD for each 
grating. 



None of these parameters have any significant trend with respect to date or  detector age.  
In general as wavelength decreases the width of the peaks (a) and the distance between 
the peak centers (c) shrink until the two peaks effectively merge into one.  The difference 
between a two peak and one peak solution is most noticeable on the G705M grating with 
only small differences on the G430M grating and nearly no difference on the G230MB 
grating.  The linear relation between c and λ, which intercepts at zero, indicates that this 
feature is could be cause by an internal reflection.  Only the width of the peaks (a) shows 
any trend with respect to CCD column number (Figure 4).  This is explained by a slight 
change in focus across the CCD. 

 
Figure 4  Width of the peak (a) as a function of CCD column for each grating 



 
Figure 5  Separation between peaks (c, blue, left axis) and ratio of peak amplitudes (b, green, right 
axis) as a function of wavelength. 

4.  Squared Lorentzian Blurring Function 

One advantage of using with Gaussians to model the XSF is that a Gaussian convoluted 
with a Gaussian yields a Gaussian.  This makes it easy to blur one profile to match 
another in order to, for example, correct for a change in focus across the CCD.  
Unfortunately, Gaussian functions do not do a good job fitting the tails of the observed 
XSF.  Therefore, we need to determine the blurring function that can be convoluted with 
a squared Loretzian and yield a squared Loretzian.   

Assuming two squared Loretzians, one with a peak width of “a” and another with a wider 
peak width of “b” which have equal areas under their curves (same total flux), what 
function can be convolved with the first to yield the second?  This problem is far less 
complicated in Fourier space where the quotient of the Fourier transforms of the first and 
second squared Loretzians is equal to the Fourier transform of the unknown blurring 
function.   

Remember that we are also constraining the area under the curve of the first squared 
Loretzian to be equal to the area under the curve of the second squared Loretzian.  This 
constraint is constructed in order to conserve total flux, which is a reasonable assumption 
for an XSF that is being “defocused.” 



This method yields the blurring function: 
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Where the current width of the profile is a and the target width of the profile is b.  The 
term in square brackets reduces to unity in every circumstance one is likely to encounter 
with the STIS CCD.  The remaining function can be used to blur the XSF while 
conserving the total flux.   
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