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1.  Introduction:  A special type of interpolation problem 
 
These notes concern STIS observations, but can also be applied to other forms of  data where 
the pixels are somewhat larger than the optimal size.   In the past, spatial resolution better than  
0.2″ has been difficult to attain with the STIS / CCD, mainly because the available software  
wasn’t well adapted to the instrument’s pixel size,  which is too large for good sampling at 
most wavelengths.  Using techniques described below,  we obtain a genuine FWHM spatial  
resolution of about 2 pixels  ≈  0.1″,  a substantial improvement over the standard software.   
This is nearly the best that one can do with procedures that are general.   Better resolution may  
be possible based on prior knowledge of the target object’s structure, but that requires special 
case-by-case treatment.           
 
Here we have essentially a non-textbook interpolation problem.   Image data, including the two- 
dimensional spectral images that STIS produces, require geometric transformations for distortion  
corrections, rotation, rectification of  rows and columns, scale calibration, and pixel resizing.  
Such transformations involve subpixel modeling, i.e., the original pixel values  F ( column, row )  
must be converted into a continuous function  g ( x, y ) ,  either explicitly or implicitly in the  
reduction process.  Standard linear and cubic-spline interpolation techniques give poor results  
if the data pixels are wider than about half the FWHM of the relevant point-spread function  
(p.s.f.);   this informal criterion is more demanding than the famous sampling theorem, see  
Section 3 below.   Moreover, the bad effects of an unsatisfactory transformation are irreversible.   
HST imaging programs often use spatial “dithering” to improve the effective sample spacing, 
but such techniques have not been feasible for most STIS spectroscopy.  
 
Therefore we need a consistent method for sub-pixel modeling in data where the pixel size is  
comparable to the fundamental p.s.f.’s FWHM.   
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2.   Four preliminary remarks   
 
(a)  For simplicity, in these notes we discuss the 1-dimensional case.  For a 2-dimensional  
image, apply the same reasoning to both dimensions, rows and columns separately.    
 
(b)  Cubic spline interpolation is not a panacea, and usually isn’t even appropriate.  Splines are  
best if we wish to interpolate a precisely-defined mathematical function for some purpose that 
requires smoothness -- quite different from working with observational data perturbed by noise.  
Moreover, a 5-to-7-point non-spline interpolation formula, with coefficients “tuned” to a well- 
chosen Fourier frequency,  can represent high-S/N data with smaller errors than a spline, albeit 
less smoothly.   Don’t assume that spline fitting is best merely because textbooks feature it! 
 
(c)   Remember to distinguish between pixel values and function samples.  Let’s denote the  
underlying continuous function, which we hope to estimate from the data, by  f ( x ),  where  x   
is measured in pixels (either rows or columns).  Then the pixel value function  F ( x ) is an  
average of  f ( x ) between  x  −  0.5 ∆x  and  x  +  0.5 ∆x ,  where usually we assume that  ∆x  =   
1 pixel.   [ ∆x  can be less than unity if there’s “dead space” between adjacent pixel active areas;   
and, more generally, the local average might include some x-dependent weighting function.]     
If pixel centers are located at integer values of  x ,  we can regard  F ( x )  as a continuous  
function that has been sampled only at   x  =  1, 2, 3 …   As Rayleigh noted more than 130 years  
ago [ Phil. Mag. XLII, 441 (1871) ],  a good approximation for  f  in terms of  F  is:  

      (1)                           f ( x )    ≈    F ( x )   −   (∆x) 2 F ″ ( x ) / 24 ,  
where  F ″  denotes the local second derivative numerically estimated from the three or four  
closest data values  F ( n ) .   We can employ this formula at integer values of x and then 
estimate f ( x ) elsewhere by interpolation.   For our purposes the Rayleigh correction turns out 
to be relatively minor;  but it shouldn’t be ignored.  
 
(d)  Shape of the point spread function (p.s.f.):   For a point source,   f ( x )  represents the  
overall resolution of the optical system.  Then, with STIS / CCD data at blue wavelengths,   
experiments show that both  f ( x )  and  F ( x )  in the spatial direction (perpendicular to  
dispersion) can be approximated well by functions of the form    

                                    α / { α  +  β ( x  −  x 0 ) 2  +  γ ( x  −  x 0 ) 4 } , 
or often 
                                            a 4 / { a 2  +  ( x  −  x 0 ) 2 } 2  . 
 
The true p.s.f.’s are noticeably asymmetric, but these expressions can be used for realistic 
assessments of subpixel modeling methods,  and can be applied to the high-x side which  
is steeper and thus more difficult to model.   The minimum FWHM of  F ( x ) in data that  
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we’re concerned with is close to 1.7 pixels,  implying that  f ( x ) has a minimum FWHM of   
1.3  to 1.5 pixels.   
 
3.  A practical limitation on general-purpose resolution 
 
How seriously does pixel size limit the effective resolution?   The sampling theorem basically  
requires  ( shortest usable Fourier wavelength )   ≥   ( 2 × pixel size ) .   Since the FWHM of a 
p.s.f. tends to be about half the dominant or critical Fourier wavelength, one might hope to  
achieve a  p.s.f. whose FWHM is roughly one pixel.   In practice, unfortunately, this criterion  
is too optimistic.   When seeking an accurate mode of  real data that were obtained without  
“dithering” the observations,  the attainable p.s.f. FWHM is almost two pixels, not one. * 
                 

  
 * Why is this true?  Fundamentally, at the famous sampling limit half the Fourier information  
    is missing, because sin ( k max x + φ 0 )  with a particular phase φ 0  gives zero signal.  Close to  
    the limit, Fourier components with disadvantageous phases can be measured only by sampling  
    a large interval of many pixels. Noise and irregularities make this impractical in real data.        
 

 
As an example, consider a specific pixel-value function: 

     (2)                          F ( x )   ≈   3.0276 / { 1.74  +  ( x  −  x 0 ) 2 } 2  , 
which has  FWHM  ≈  1.7 pixels.  The underlying function  f ( x )  has  FWHM ≈ 1.4 pixels. 
                
Figure 1 shows a case where  x 0   is an integer, so the profile is centered at the middle of a pixel. 
Then a spline fit, for instance, models the shape so accurately that the errors would be hard to 
distinguish in a figure of this size. 
 

                                                                              
           Figure 1.    Typical  F ( x )  p.s.f.  with  FWHM  =  1.7 pixels,  with  x 0  at a pixel center.     
           A spline fit based on the discrete data points (dots) coincides with the true curve so well 
           that we don’t attempt to show it separately here. 
 
In Figure 2 on the next page, however,  x 0  is a half-integer, so the peak occurs at a boundary  
between two pixels.   Now the spline fit is not so good;   it has a lower peak, a broader FWHM,  
and an incipient kink around  x − x 0  ≈  ± 2.5 .  
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              Figure 2.   Same underlying function as in Fig. 1, but here the data points (dots) occur  
              at half-integer values of   x  −  x  0 .    The solid curve is a spline fit to the data points  
              while the true pixel-value function  F ( x )  is shown by a dashed curve. 
 
Evidently the effective resolution depends on an object’s precise location on the detector, 
which doesn’t surprise anyone accustomed to half-pixel “dithering” of HST images.   
Spectroscopists, alas, usually can’t afford to dither.   
 
The worsened resolution and lower peak in Figure 2 are not, per se, our main worry.   Rather,  
the trouble is in the variations depending on precise location of an object on the detector,  the  
difference between Figures 1 and 2.   For instance, suppose we observe a point source and  
extract a spectrum only two or three STIS/CCD rows wide, seeking good spatial resolution.  
Since the spectrum isn’t exactly parallel to the rows (see Fig. 3),  at some columns (wavelengths)  
it coincides with row centers but for some other columns it’s centered at boundaries between  
rows -- it continuously shifts between the cases shown in Figs. 1 and 2.   One result:  In a  
spectrum extraction narrower than four detector rows, the continuum flux level appears wavy or  
“scalloped” as a function of wavelength.  Most STIS users avoid this difficulty by integrating 
over 5 or more rows, thereby sacrificing the instrument’s spatial resolution.  Can we do better? 
 

                        
         Figure 3.   A cut across the the spectrum of any particular pointlike object matches Fig. 1  
         at some wavelengths and Fig. 2 at others.    
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In most cases, the spectral waviness or scalloping is not alarmingly bad in an extracted spectrum  
of a single star, centered on the star image.  But it can become ruinously large in an offset  
extraction, e.g. if one is trying to get the spectrum of another object or location less than 5 pixels  
away.   The same difficulty occurs in the dispersion (wavelength) direction, though it isn’t as  
easy to notice that way;   the apparent width and profile of a narrow spectral feature depends on  
its precise location on the detector.  Since a general data-reduction program cannot know where  
objects or spectral features are located on the detector, at first sight the pixel-sampling problem  
may appear insoluble.  Fortunately, however, an acceptable technique is available. 
 
4.   A general method that works fairly well 
 
Our goal is to derive from the data points  F ( n )  a continuous function  g ( x ) ,  whose purpose 
is to approximate  f ( x )  as well as possible under the circumstances.   “As well as possible”  
means as consistently as possible:  The deduced shape of  g ( x )  should not perceptibly depend  
on the exact fractional-pixel location of   f ( x )  and  F ( x ) .  The following procedure makes this 
feasible;  numerical details will be given in Section 5. 
 
(1)   Based on nearby data points F ( n ) ,  we employ a suitable interpolation formula to 
calculate  g ( x )  at half-integer values of  x , i.e., at the boundaries between pixels.    
 
(2)   Then, choose another formula which gives us  g ( x )  at integer values of  x ,  the pixel  
centers.   Our goal here is somewhat subtle.  It’s easy to develop a formula which gives a very  
accurate approximation to  f ( n ) in terms of  F ( n ) .   But that’s not what we need for this  
problem!   Instead, we adapt our expression for  g ( n ) to be as consistent as possible with 
 the formula used in step 1 above.    
 
What do we mean by “consistent”?   Imagine two pixel-value functions  F1 ( x ) and  F2 ( x )   
which have the same shape but different locations:   F2 ( x )  =  F1 ( x  +  0.5 ) .     Then let’s  
estimate values  g 1 ( n + 0.5 )  from data points  F1 ( n )   with the formula adopted in step 1 ,   
and separately estimate  g 2 ( n )  from data points  F2 ( n )  using the formula chosen for  
step 2.    The two formulae are mutually “consistent” if the resulting values   g 2 ( n )  are  
nearly the same as the corresponding   g 1 ( n + 0.5 ) .    This goal differs from the standard  
interpolation recipes found in textbooks and reference books.    
 
      

 
   Note that in step 1 we start with the half-integer x  values rather than the integer  x ‘s.    
   This is because the function values estimated at  x = integers are normally less blurred than  
   those at  x = half-integers;  compare Figs. 1 and 2.  If we were to calculate the  x = integer  
   points first, then any attempt to find correspondingly good values at half-integer  x ‘s  
   would amount to de-blurring or deconvolution, with consequent “ringing” and other  
   artifacts of the process.   
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(Step 3)  Finally, we estimate the continuous function  g ( x )  by interpolating between the points  
calculated in steps 1 and 2.   Local cubic interpolation is best but quadratic interpolation may 
suffice, since the new data points are separated by only half the original detector pixel width  
and are somewhat blurred. 

 
5.   Specific formulae and coefficients   
 
There’s no need for spline techniques here;  they would require careful non-routine definitions,  
and only the nearest few data points matter anyway.  For modeling  g ( x ) within pixel  n ,  five  
to seven nearby data values  F ( n ± m  )  provide as much accuracy as we can hope to attain. 
 
For Section 4’s “step 1”,  we use a symmetric interpolation formula :     
 
    (3)       g ( n + 0.5 )    =    P · { F ( n )  +  F ( n + 1 ) }   +   Q · { F ( n − 1 )  +  F ( n + 2 ) }  
                                                    +    R · { F ( n − 2 )  +  F ( n + 3 ) } , 
 
where coefficient  R  should be relatively small.  The constant coefficients  P ,  Q ,  R  have  
two definite constraints.    First we require  g  =  f   if   f ( x )  =  constant , or, equivalently,   
“counts must be conserved”.    Therefore   P  +  Q  +  R   =  0.5 .     Second, the formula should  
reproduce  f ( x )  if it varies only slowly with  x .    By symmetry of terms eqn. (3) automatically  
does this for   f ( x )  =   x ,  so we get our second constraint by requiring the formula to work  
also for  f ( x )  =  x 2

 .    This corresponds to pixel value function  F ( x )  =  x 2  +  ( ∆x ) 2 / 12    
where  ∆x  is the sensitive width of a pixel,  see Section 2 above.    The resulting constraint is   

                   3 P  +  27 Q  +  75 R   =  − ( P + Q + R ) ( ∆x ) 2   =  − 0.5 ( ∆x ) 2 .      
If both constraints on P, Q, R  are satisfied, then  g ( n + 0.5 ) calculated from formula (3) will  
be equal to  f ( n + 0.5 )  for any cubic* polynomial  f ( x ) .    [*  Not just quadratic ;  symmetry  
in the formula takes care of  x 3 . ]   Thus we can represent low Fourier frequencies quite well.     
 
For any given value of  R  (presumably small),  the two constraints determine  P  and  Q :  

      (4a)          P   =     +  { 27  +  ( ∆x ) 2 } / 48    +   2 R , 

      (4b)         Q   =     −   { 3  +  ( ∆x ) 2 } / 48    −   3 R . 
 
R   ≈  + 0.028  gives the best average fit if   ∆x  =  1  and if the p.s.f. has  FWHM  ~  2 pixels.    
However,  numerical experiments show that this choice entails complicated behavior two or 
three pixels away from the p.s.f. center :  the tail of  g ( x ) calculated for the p.s.f. develops a  
slight wiggle.  If instead we choose simply R  =  0,  then this effect vanishes while the central  
peak is only mildly affected. Thus we adopt a simple compromise based on many numerical 
experiments.    
                                                                     ( next page )    
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Adopted coefficients for step 1: 

      (5a)          P   =   + 0.58, 

      (5b)          Q   =   − 0.08, 

      (5c)          R   =     0. 
 
These rounded-off values are consistent with  ( ∆x ) 2  =  0.84,   ∆x  ≈  0.92 ,  a detail that only 
mildly affects the results.   [ ∆x  =  0  would amount to ignoring Rayleigh’s distinction between    
f ( x )  and   F ( x ) .    Because self-consistency requires our effective p.s.f.  to be substantially  
blurred,  this distinction plays only a minor role after all. ]     
 
Next, “step 2” in Section 4, we need an appropriate symmetric formula for a pixel center, 
g ( integer ) :     
 
      (6)               g ( n )    =    A · F ( n )   +   B · { F ( n − 1 )  +  F ( n + 1 ) }  
                                             +    C · { F ( n − 2 )  +  F ( n + 2 ) } . 
 
Coefficients  A = +1.123,  B = −0.068,  C = +0.0065  provide an excellent fit to the STIS/CCD  
p.s.f..  However, as explained in Section 4 above, that is not our goal here.  Instead we aim to get  
results that work well in combination with formula (3) with the chosen coefficients (5abc).    
Two constraints on  A, B, C,  based on the same reasoning as those used for  P, Q , R ,  are    
A  +  2 B  +  2 C  =  1   and   24 B  +  96 C  =   − ( ∆x ) 2 .    For a given value of  C  these imply  
     (7a)         A    =    1  +  ( ∆x ) 2 / 12   +  6 C , 

     (7b)         B    =     − ( ∆x ) 2 / 24  −  4 C .       
 
We can use various criteria to choose the “best” value of  C :    Minimum mean-square  
difference between the  g 1 ( n + 0.5 )  and  g 2 ( n )  described in Section 4,  smoothest 1-row 
or 2-row extractions, etc.   Numerical experiments show that for all obvious criteria,  the 
optimum C  for consistency with coefficients (5abc) is between  −0.06  and  −0.04 .   Therefore 
we choose  C  =  −0.05 .    Assuming  ( ∆x ) 2  =  0.84  consistent with our  P,  Q,  R  values,   
we adopt 

     (8a)         A  =  + 0.77 , 

     (8b)         B  =  + 0.165 , 

     (8c)         C  =  − 0.05 . 
 
[ It’s obvious from the  + + −  signs that we’re blurring the p.s.f.   If these coefficients were 
designed for the best possible fit to  f ( n ),  then their signs would alternate,  +  −  + . ] 
 
Incidentally, the best choices for coefficients (5abc) and (8abc) do not depend strongly on the  
assumed width of the  f ( x )  p.s.f.    The adopted values are OK for  FWHM  >  1.3 pixels. 
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            An afterthought:  For a reason concerning statistical noise levels, noted in Section 8 
            below, it may be advantageous to require   A 2  +  2 B 2  +  2 C 2   =   2 P 2  +  2 Q 2 . 
            Given the adopted values of  P  and  Q  in eqns. (5ab),  this additional constraint leads 
            to  A  =  + 0.800,  B = + 0.145,  C = − 0.045  (rounded to 3 places).   But we adopted 
            the coefficients (8abc) for the STIS / CCD processing, because, frankly, we didn’t  
            think of this extra consideration early enough.   In practice the differences are slight.     
 
6.  Interpolation formulae for general  x 
 
Using the above formulae, we can calculate a set of values  g ( x )  at  integer and half- 
integer values of  x .   For other values of  x ,  we interpolate as follows: 
  •  Identify the integer  n  which is closest to  x . 
  •  Define  s  =  x  −  n ,   in the range  −0.5 to +0.5.     ( s  =  0  at the center of pixel  n. ) 
  •  Based on the values  g ( n − 0.5 ),  g ( n ),  and  g ( n + 0.5 ),  employ local quadratic 
     interpolation :  
            (9)          g ( x )   =   a   +   b s   +  c s 2 ,       

     where  

          (10a)        a   =    g ( n ) , 

          (10b)        b   =   g ( n + 0.5 )  −  g ( n − 0.5 ) , 

          (10c)        c   =   2 g ( n + 0.5 )  −  4 g ( n )  +   2 g ( n − 0.5 ) . 
 
  •  Since  g ( n − 0.5 ),  g ( n ),  and  g ( n + 0.5 )  are linear combinations of five pixel values  
      F ( n − 2 ) … F ( n + 2 ) ,  we can write formulae for  a ,  b ,  c  in terms of these data 
      points.   Results: 
 
          (11a)       a   =    − 0.050 F ( n − 2 )   +   0.165 F ( n − 1 )   +   0.77 F ( n )  

                                        + 0.165 F ( n + 1 )   −   0.050 F ( n + 2 ) ,   
 
          (11b)       b   =   + 0.08 F ( n − 2 )   −   0.66 F ( n − 1 )    

                                        +   0.66 F ( n + 1 )   −   0.08 F ( n + 2 ) , 
 
          (11c)       c   =    + 0.04 F ( n − 2 )   +   0.34 F ( n − 1 )   −  0.76 F ( n )  

                                        +   0.34 F ( n + 1 )   +   0.04 F ( n + 2 ) .   
 
The following rules allow us to check the coefficients in (11abc) for errors: 
      ·  The terms have obvious symmetries centered on  n , 
      ·  Sum of coefficients  =  1.00 for a ,  0.00  for  b  and  c , 
      ·  Sum of  (offset × coefficient)  in (11b) is  1.00 , 
      ·  Sum of  (offset 2 × coefficient)  in (11c)  is  1.00 .   
In each case, be careful with the signs.    
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…By the way, it would not be very difficult to work out a local cubic interpolation scheme, 
which would be smoother than the quadratic one and not much more complicated.  Quadratic 
interpolation seems adequate for the STIS / CCD data.   
 
 

7.  A comparison of results using three techniques   
 
As explained in Section 3 above,  the shape of  g ( x ) estimated by any method depends on 
the precise fractional-pixel location  x 0  of the underlying function  f ( x ) ,  because this  
determines which points of the function are sampled by the data pixel values  F ( n ) .  Imagine  
shifting x 0  progressively.  Then we get a set of functions  g ( x ) , whose shapes all lie between  
a lower and an upper envelope.   
 
Figure 4 shows an example using a naïve interpolation method.  Here the underlying function 
f ( x )  has the same shape as formula (2) but its FWHM is slightly less than 1.5 pixels.  In this  
case g ( x ) is estimated by linear interpolation between the F ( n )  values,  a method which is  
said to be used in some existing data reduction software,  possibly including “pipeline”  
reduction of STIS data.  The range of variation is disagreeably large. 
 
 

                     
               Fig. 4 .    Range of  g ( x )  estimated by linear interpolation in  F ( x ) .  The narrow  
               curve is the underlying function  f ( x ) ,  and the shaded region shows the range of  
               estimated  g ( x )  functions,  whose shapes depend on the central location  x 0 .   
 
 
                                               -----   continued on next page   -----   
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Next, Figure 5 shows the same data modeled by cubic spline interpolation.  It’s much better 
than Fig. 4  but is still too fuzzy to be satisfying.         
    

                     
                   Fig. 5.   Similar to Fig. 4,  but here we have used cubic spline interpolation 
                   between  F ( n )  values.    
 
Finally,  Figure 6 shows what we get by using our adopted procedure and coefficients 
described in Sections 4--6 above.   The improvement in consistency is obvious even though  
this method uses fewer points than spline fitting.    
 

                   
                       Fig. 6.   Similar to Figs. 4 and 5,  but using our adopted technique. 
 
Now the FWHM  of  g ( x )  is about 10% worse than in Fig. 5  (2.1 vs. 1.9 pixels);  in effect,  
the original  f ( x )  has been convolved with a blurring function whose FWHM is about 1.5  
pixels.   An appreciably better solution to our overall problem would be hard to find.  Using  
STIS/CCD data with 0.05″ pixels,  evidently we can attain a general, fairly robust FWHM  
resolution of about 0.1″ or maybe 0.08″.  This is considerably better than that allowed by 
previously existing “pipeline” software, and at long wavelengths it is close to the HST’s 
fundamental resolution. 
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Clarification:   The greatest advantage of our technique occurs when dealing with spatially 
complex objects.  A “one-dimensional spectrum extraction” is, essentially, the sum of several  
CCD rows, which may behave fairly well in data processed by earlier techniques  for an isolated 
point source, i.e., for a single star.  In Fig. 4, the function  g ( x ) strongly depends on the precise  
subpixel location of the star, but the integral of   g ( x )  across an interval  ∆ x > 2  does not,   
provided the integral is centered near the peak.  In other words, the cases  x 0  =  integer  and   
x 0  =  half-integer then give fairly consistent extracted spectra.   Small errors in centering the  
extraction don’t affect this statement very much.  Therefore our method gives only modestly  
improved spectra of isolated stars.   Suppose, however, one is interested in two objects A and B  
which are located less than 0.4″ apart.  Then, in terms of spatial location  x,  each spectrum is  
located on the shoulder of the other.   In that case any extraction of spectrum B is obviously 
contaminated by object A.   Since the contribution by A is very asymmetric in the spatial  
direction, it may be severely “scalloped” for the reasons implied on page 4,  if an inferior  
subpixel modeling technique is used.  If B is considerably fainter than A, then the artificial 
irregularities in the contaminating spectrum, introduced mainly by the processing method, can  
make the spectrum of B almost unusable.  (Subtraction of a separately-extracted spectrum of 
A does not remove such irregularities -- if this isn’t obvious, think carefully about the situation.)    
The same effects become even more serious for a spatially complex object like η Carinae. In 
such cases, the techniques described above are far better than previous methods.   
 
The moral of this story,  sadly familiar to thoughtful HST users:  A satisfying instrument should  
have  (effective pixel size)  ≤  0.5 × { FWHM of p.s.f. in fundamental  f ( x ) } .    This is  
appreciably smaller than the size suggested by a naïve interpretation of the sampling theorem. 
 
8.   Noise statistics in the processed data 
 
When we rebin pixels using any interpolation scheme, neighboring “output” pixel values are 
not independent of each other.   This fact can greatly alter the results of statistical tests, and it 
alters the precise meaning of any quoted “r.m.s. noise” value.    Such values of  σ  are often   
misinterpreted and misapplied, sometimes in the initial-processing software.   (In particular,  
beware of the “error” files produced by standard pipeline processing of  HST /  STIS / CCD  
data.) 
 
Let’s examine r.m.s. noise levels in data files produced by the subpixel-modeling procedure  
described above.    For simplicity, first consider one-dimensional data.  Here we’ll focus on  
a special case wherein each output pixel is half as wide as an input pixel, and each output  
pixel center coincides either with the center of an input pixel or with the boundary between  
two input pixels.    
   Original (“input”) data:         F ( n ) ,   where   n  =  pixel number  =  1, 2, 3, … 

   Processed (“output”) data with pixel width = 0.5:      g ( x ) ,   where  x  =  1, 1.5, 2, 2.5, … 
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The r.m.s. noise level 
 
In the following notes  m ,  n ,  and  k  denote integers.  Our subpixel-interpolation formulae, 
explained in Sections 4 and 5 above,  are 
 
    (12)      g ( n )    =    − 0.05 F ( n  − 2 )   +   0.165 F ( n − 1 )   +   0.77 F ( n )   
                                             +   0.165 F ( n + 1 )   −   0.05 F ( n + 2 ) ,  
 
    (13)      g ( n + 0.5 )   =   − 0.08 F ( n − 1 )  +  0.58 F ( n )  +  0.58 F ( n + 1 )  −  0.08 F ( n + 2 ) . 
 
Suppose the r.m.s. noise per pixel in  F  is a constant,  σ F .   Then the corresponding noise 
parameters for  g  are  
 
    (14)      σ g ( n )   =   √  { ( 0.05 σ F ) 2   +   ( 0.165 σ F ) 2   +   ( 0.77 σ F ) 2    
                                             +   ( 0.165 σ F ) 2   +   ( 0.05 σ F ) 2  } 

                              =     0.80768 σ F   ,  
 
    (15)     σ g ( n + 0.5  )   = √  { ( 0.08 σ F ) 2  +  ( 0.58 σ F ) 2  +  ( 0.58 σ F ) 2  +  ( 0.08 σ F ) 2  } 

                                        =     0.82801 σ F  . 
 
These are smaller than  σ F   because our procedure implicitly smooths or blurs the data.  The  
values in (14) and (15) are close to each other because formulae (12) and (13) were adapted to 
give nearly consistent results regardless of the fractional-pixel location of a data feature.  (As  
noted on p. 8, we could have adjusted the interpolation coefficients to make (14) and (15)  
exactly equal.)   To sufficient accuracy we can adopt the quadratic average, 

    (16)           σ g ( 1-dim. av )    ≈    0.81791 σ F  .   
In this sense, each output pixel value  g  is statistically equivalent to an average of approximately  
1.5  input pixels  --  because  0.81791  ≈  1 / √  1.5 .    
 
Formula (16) refers to the one-dimensional case;  for a 2-dimensional image we find, by similar 
reasoning,  
 
    (17a)        σ g ( m , n )   =   0.65235 σ F   ,  

   (17bc)      σ g ( m + 0.5 , n )    =    σ g ( m , n + 0.5 )   =    0.66877 σ F   ,  

    (17d)        σ g ( m + 0.5 , n + 0.5 )   =   0.68560 σ F   .  

These give a quadratic average  

     (18)         σ g ( 2-dim. av )    ≈    0.66898 σ F  .  
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Of course this is smaller than (16) because the data have been smoothed or blurred along  
columns as well as rows.     Note that  σ g ( 2-dim. av ) / σ F     is the square of    
σ g ( 1-dim. av ) / σ F   .  
 
It is essential to clearly recognize the precise meanings of  σ F   and σ g .   The first of them is 
straightforward:  It is the r.m.s. error in an area of one original data pixel,  assuming that the  
noise in each pixel is independent of every other pixel.  The noise parameter  σ g ,  however, is  
more subtle and less familiar.  It is the r.m.s. error in the value of  g  calculated for a rebinned  
pixel, and in most cases this is considerably smaller than one would naively guess from the  
number of counts in the area of either type of  pixel.   In effect,  σ g   represents statistical noise 
for a sample width of about 1.5 original pixels in the one-dimensional case, or a sample area of  
about 2.2 pixels in the two-dimensional case.    
 
Tests to determine or verify the noise level from local characteristics of the data 
 
Consider again the one-dimensional case.  Given a set of truly independent data values  F ( n ),   
the simplest way to estimate  σ F   is to calculate differences of many adjoining pixels: 
 
     (19)    r.m.s. difference  [ F ( n + 1 )  −  F ( n ) ]      =      √  2 σ F  .         
 
If, however,  F ( n ) is not a constant, then the difference used in (8) is affected by the local slope. 
A better simple estimator, valid to second order, is  
     (20)    r.m.s. difference  [ F ( n )  −  0.5 { F ( n − 0.5 )  +  F ( n + 0.5 ) } ]    =   √  1.5 σ F  . 
 
But this formula must not be applied to our processed (“output”) data, where adjoining pixels 
are strongly correlated.    If we use nearest-neighbor pixels as in eqn. (9),  the r.m.s. difference 
[ g ( n )  −  0.5 { g ( n − 0.5 )  +  g ( n + 0.5 ) } ]   turns out to be only about  0.3 σ g ,  not  1.4 σ g  .           
         
Expected r.m.s. differences  [ g ( n )  −  0.5 { g ( n − 0.5 k )  +  g ( n + 0.5 k ) } ]  are listed on the  
next page for several values of the offset  k . 
 
 
                                                   -----   continued on next page   -----
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                                               Root  Mean  Square differences    
                                  ∆  =  [ g ( n )  −  0.5 { g ( n − 0.5 k )  +  g ( n + 0.5 k ) } ]      
                                                     ( one-dimensional  case )    

            Offset  k   
       (output pixels) 

   ( r.m.s. ∆ ) / σ F   ( r.m.s. ∆ ) / σ g  

                  1          0.2399        0.2933 

                  2          0.6976        0.8529 

                  3          0.9954        1.2170  

                  4          1.0708        1.3092  

                  5          1.0430        1.2752  

                  6          1.0068        1.2309  

                  7          0.9977        1.2199  

                  8          1.0005        1.2232 

          9 or more          1.0017        1.2247 
 
 
        …  Perhaps a better empirical way to estimate noise in the data, especially for two- 
       dimensional data, is to compare each pixel value with the average or the median 
       of many surrounding values.   Remember, though, that data points separated by 
       less than about 3 pixels are noticeably correlated as the Table shows.  (This  
       statement refers to the rebinned processed pixels, not the original data pixels.) 
 


